US009304934B2

a2 United States Patent

Jackson

US 9,304,934 B2
Apr. §5,2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(30)

Jan. 24, 2013

(1)

(52)

(58)

REGISTER FILE HAVING A PLURALITY OF
SUB-REGISTER FILES

Applicant: IMAGINATION TECHNOLOGIES,
LTD., Kings Langley (GB)

Inventor: Hugh Jackson, St. Albans (GB)

Assignee: Imagination Technologies Limited,
Kings Langley (GB)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 166 days.

Appl. No.: 14/157,805

Filed: Jan. 17, 2014

Prior Publication Data

US 2014/0223101 Al Aug. 7,2014
Foreign Application Priority Data

(GB) 1301285.1

Int. Cl1.
GO6F 12/00
GO6F 12/08
GO6F 9/30
GO6F 9/38
GO6F 13/00
GO6F 13/28
U.S. CL
CPC

(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)
.......... GOG6F 12/0875 (2013.01); GOGF 9/3012
(2013.01); GOGF 9/3838 (2013.01); GO6F
2212/452 (2013.01)

Field of Classification Search

CPC GOGF 12/0875; GOGF 9/3012; GOGF
2212/452
USPC i 711/125

See application file for complete search history.

226

(56) References Cited

U.S. PATENT DOCUMENTS

6,615,338 B1* 9/2003 Tremblayetal. 712/24
2003/0037221 Al* 2/2003 Gschwind etal. 712/3
2004/0073779 Al 4/2004 Hokenek et al.

2006/0039203 Al* 2/2006 Chuetal. ... 365/189.04
2009/0150649 Al 6/2009 Abella et al.

FOREIGN PATENT DOCUMENTS

WO WO000/33176 12/2000

OTHER PUBLICATIONS

Combined Search and Examination Report under Sections 17 and
18(3) dated Aug. 7, 2013, as cited in Application No. 1301285.1

(5pgs).
* cited by examiner

Primary Examiner — Mark Giardino, Jr.
(74) Attorney, Agent, or Firm — Vorys, Sater, Seymour and
Pease LLP; Vincent M DeLuca

(57) ABSTRACT

Register files for use in an out-of-order processor that have
been divided into a plurality of sub-register files. The register
files also have a plurality of buffers which are each associated
with one of the sub-register files. Each buffer receives and
stores write operations destined for the associated sub-regis-
ter file which can be later issued to the sub-register file.
Specifically, each clock cycle it is determined whether there is
at least one write operation in the buffer that has not been
issued to the associated sub-register file. If there is at least one
write operation in the buffer that has not been issued to the
associated sub-register file, one of the non-issued write opera-
tions is issued to the associated sub-register file. Each sub-
register file may also have an arbitration logic unit which
resolves conflicts between read and write operations that want
to access the associated sub-register file in the same cycle by
prioritizing read operations unless a conflicting write instruc-
tion has reached commit time.

20 Claims, 10 Drawing Sheets

228 102

-

Register Fil

Dispatch Port ‘| Write Port

- L

Buffer B

Sub- Sub-
Register| |Register
File File

A B c

Sub-

202 204 206

1T

Buffer C

Tl

Reglster
File

7—'7—‘

Buffer D

TT

Sub- Sub- Sub-
Register | |Register| |Register
File File File
D E F

Buffer E| | Buffer F

T

Zr ;?_‘ 21?~

U.S. Patent Apr. 5, 2016 Sheet 1 of 10 US 9,304,934 B2

100
Register Renaming Map /
Architectural Reg. 0123 108
Sub-Regqister File AlF]CIA
Physical Register 6|5|1|3
104 A 106 110 114
(rJ N\ y f‘{ () r—¢
Decode Re-
Fetch p» and Order p» Commit
rename | Buffer
\. J/ \. J —
)] D
Branch
Predictor A 112
) y ~
116
Out-of-order pipelines
Y I 102

Register File rJ

@

FIG. 1

U.S. Patent Apr. 5, 2016 Sheet 2 of 10 US 9,304,934 B2
2@ 228 rJ102
Dispatch Port Write Port
Register File
214 216 218 220 222 224
Yy A A Yy Svy A
s "\ 4 N 7 ~ g N ™ 4 N\
Buffer A Buffer B| | Buffer C Buffer D| | Buffer E Buffer F
\. y. \. J \ J/ \. VRN y, \. J
 J Y Y Y Y \
4 ™ ' N 7) 4 N\ [™ 4 ™
Sub- Sub- Sub- Sub- Sub- Sub-
Register Register| | Register Register| |Register Register
File File File File File File
A B C D E F
\ J \ J \ rJ J \ J kr_} J
202 204 206 208 210 212

FIG. 2

U.S. Patent Apr. 5, 2016 Sheet 3 of 10 US 9,304,934 B2

228 296
308 |Read Port Write Port Dispatch
Port
214
302 Buffer
Read Buffer A
Sub-Register — 1 .
File Read Sub-Register -
File Write
Y Vv ot

N4

Sub-Register File
Read/Write

Arbitrator Control \

304
Arbitration Su_b—
Logic Regillster 502
e
A KJ
310
Commit Port

FIG. 3

U.S. Patent Apr. 5, 2016 Sheet 4 of 10 US 9,304,934 B2

400
402 /
P
[FETCH AND DECODE NEXT INSTRUCTION]
404
A4 L~

RENAME ARCHITECTURAL REGISTERS WITH SUB-REGISTER FILE AND
PHYSICAL REGISTER

406
STORE WRITE OPERATION [N PROVIDE INSTRUCTION TO QUT-OF-
APPROPRIATE BUFFER ORDER-PIPELINES FOR EXECUTION
410
Y Y
WRITE VALUE PROVIDED || READ OPERATIONS | o
ISSUED TO REGISTER
TO REGISTER FILE L~
FILE
412
~ \ 4 A 4
WRITE VALUE STORED IN o ISSUE READ 418
APPROPRIATE BUFFER PERATION(S) TO |,
APPROPRIATE BUFFER(S)
Y Y

EACH BUFFER SELECTS WAITING WRITE
OPERATION FROM BUFFER AND ISSUES TO SUB-
414 REGISTER FILE A 4
ISSUE READ 420
OPERATION TO SUB-
REGISTER FILE

Go 10 STEP 502 oF METHOD 500

FIG. 4

U.S. Patent Apr. 5, 2016 Sheet 5 of 10 US 9,304,934 B2

500

S

502

[READ MULTIPLEXER INPUTS]

506
L

SuBMIT WRITE
OPERATION TO SUB-
REGISTER FILE

COMMIT TIME FOR WRITE
OPERATION?

A

READ OPERATION?

[SUBMIT READ OPERATION TO SUB-REGISTER FILE]

FIG. 5

U.S. Patent Apr. 5, 2016 Sheet 6 of 10 US 9,304,934 B2

Register Renaming Map 614 |

|
[
606 A 610 618 622 |
[

'FJ‘VVVH‘,_LL

Decode
Fetch P and p»
rename

Re-Order

Buffer B Commit |—

Thread

\. A L A \ / O

! | A Dy v

Branch
Predictor

—

s 628
Out-of-order
pipelines

7y 630
Y

[Register File
A EEEEH
608 612 620 624

(r-wjr r-jw’_v_dr—g

Yy

Branch
Predictor

A

Decode Re-Order
Fetch P and | Buffer b Commit

rename |

\ J \, J |
A

Y

Register Renaming Map

U.S. Patent

Apr. 5,2016 Sheet 7 of 10 US 9,304,934 B2
738 740 742 744 630
Dispatch Port Dispatch Port Write Port Write Port
Thread 0 Thread 1 Thread 0 Thread 1
714 718 722 726 730 734
~NYY YYy\WYY YY\WYY VY HVV YY \YY YVY VY LA
' 's ™ [Y N\ Y \(Y N\ ' N Y
Buffer | Buffer | | Buffer | Buffer | | Buffer | Buffer || Buffer | Buffer | | Buffer | Buffer | | Buffer | Buffer
A A B B C C D D E E F F
Thread|Thread| | Thread|Thread| |Thread|Thread||Thread|Thread] |Thread|Thread| |Thread|Thread
0 1 0 1 0 1 0 1 0 1 0 1
\. J \\ A VAN 7\ 7\ J \ \. J
716 720 724 728 732 736
Y Y Y J Y Y
. ™y r~ ™) " ™) ' ™ s 4 ™\
Sub- Sub- Sub- Sub- Sub- Sub-
Register Register Register Register Register Register
File File File File File File
A B C D E F
\. r_] y, r_j J kr_} \, r_} r_} \, r_}
702 704 706 708 710 712
Register File

FIG. 7

U.S. Patent Apr. 5, 2016 Sheet 8 of 10 US 9,304,934 B2

738 742 740 744

Dispatch Port] |Write Port Write Port
Thread 0| [Thread 0 Dispatchf f Thread 1

808 809
714 Thread 1
Read Port Read Port
802 B (_J

uffer

Read Buffer A Buffer A

™| Thread 0 —» Thread 1

Sub-Register _ _
File Read Sub-Register Sub-Register
¥ File Write File Write

S <

l Sub-Register File 806

Arbitrator Control Read/Write

804

i i 702
Artiltra_tmn Sub-Register rJ
ogic File
810 812 A
Commit Port Commit Port /
Thread 0 Thread 1

FIG. 8

U.S. Patent Apr. 5, 2016 Sheet 9 of 10 US 9,304,934 B2

902 900
~~ /
[READ MULTIPLEXER INPUTS]
906
o~
SuBMIT PAST-

COMMITTED WRITE
TO SUB-REGISTER
FILE

COMMIT TIME PASSED FOR
WRITE?

No

COMMIT TIME FOR AT LEAST
ONE WRITE?

CONFLICTING READ?

YES SUBMIT READ TO

CoMmMIT TIME FOR ONLY ONE
SuB-REGISTER FILE

WRITE

SELECT ONE OF THE

SUBMIT COMMIT SELECT WRITE AND
COMMIT TIME WRITES TIME WRITE TO SUBMIT TO SuB-
AND SUBMIT TO SUB- SUB-REGISTER FILE REGISTER FILE
REGISTER FILE
—~ ~ ~
920 918 914

FIG. 9

U.S. Patent Apr. 5, 2016 Sheet 10 of 10 US 9,304,934 B2

1002 1000

-~ /
[READ MULTIPLEXER INPUTS]

'

AT LEAST ONE WRITE ABOUT TO
BE OVERWRITTEN?

CONFLICTING READ?

SUBMIT READ TO
SUB-REGISTER FILE

ONLY ONE WRITE ABOUT TO BE
OVERWRITTEN?

SELECT ONE OF THE

SuBMIT WRITE
WRITES ABOUT TO BE

SELECT WRITE AND
OVERWRITTEN AND ABOUT TO BE SUBMIT TO SuB-
OVERWRITTEN TO
SUBMIT TO SUB- SUB-REGISTER FILE REGISTER FILE
REGISTER FILE
~ 1014 101
1016 0 010

FIG. 10

US 9,304,934 B2

1
REGISTER FILE HAVING A PLURALITY OF
SUB-REGISTER FILES

BACKGROUND

In modern superscalar processors, there are a large number
of pipelines all trying to read from and write to a shared
register file. However, it is difficult to implement a shared
register file with a large number of read and write ports
without reducing the clock speed.

One method to resolve this issue has been to implement
register file caching. This uses multiple caches (unrelated to
the memory caches in the system) to reduce the bandwidth on
the shared register file. In such systems the number of writes
to the register can be reduced using a write back caching
system as physical registers can be removed from the cache
when they are retired. However, these systems require some
form of management to migrate data between caches which
do not currently reside in the shared register file.

The embodiments described below are not limited to
implementations which solve any or all of the disadvantages
of known processors.

SUMMARY

This Summary is provided to introduce a selection of con-
cepts in a simplified form that are further described below in
the Detailed Description. This Summary is not intended to
identify key features or essential features of the claimed sub-
ject matter, nor is it intended to be used as an aid in determin-
ing the scope of the claimed subject matter.

Described herein are register files for an out-of-order pro-
cessor that have been divided into a plurality of sub-register
files. The register files also have a plurality of buffers which
are each associated with one of the sub-register files. Each
buffer receives and stores write operations destined for the
associated sub-register file which can be later issued to the
sub-register file. Specifically, each scheduling cycle (e.g.
clock cycle) it is determined whether there is at least one write
operation in the buffer that has not been issued to the associ-
ated sub-register file. If so, one of the non-issued write opera-
tions is issued to the associated sub-register file. Each sub-
register file may also have an arbitration logic unit which
resolves conflicts between read and write operations that want
to access the associated sub-register file in the same schedul-
ing cycle (e.g. clock cycle) by prioritizing read operations
unless a conflicting write operation has reached commit time.

A first aspect provides a register file for an out-of-order
processor, the register file comprising: a plurality of sub-
register files, each sub-register file comprising at least one
physical register; and a plurality of buffers, each buffer being
associated with a sub-register file and configured to: receive
and store write operations destined for the associated sub-
register file; receive and store a write value for each write
operation stored in the sub-register file, once a write value has
been received for a particular write operation that write opera-
tion becomes a waiting write operation; determine, each
clock cycle, if there is at least one waiting write operation in
the buffer; and if there is at least one waiting write operation
in the buffer select one of the waiting write operations and
issue the selected write operation to the associated sub-reg-
ister file.

A second aspect provides an out-of-order processor com-
prising: a register file according to the first aspect; and a
decoding and renaming stage, the decoding and renaming
stage being configured to: receive a fetched instruction;
assign any architectural register referred to in a write opera-

10

15

20

25

30

35

40

45

50

55

60

65

2

tion of the fetched instruction a sub-register file and a physical
register of the assigned sub-register file; and rename the
architectural register with an indicator of the assigned sub-
register file and an indicator of the assigned physical register.

A third aspect provides a method of reading and writing to
a register file of an out-of-order processor, the register file
comprising a plurality of sub-register files, each sub-register
file comprising at least one physical register, the method
comprising: receiving at one of a plurality of buffers a write
operation destined for an associated sub-register file; storing
the received write operation in the buffer; receiving at the
buffer a write value for the write operation; storing the
received write value in the buffer in association with the write
operation making the write operation a waiting write opera-
tion; each clock cycle, determining if there are any waiting
write operations in the buffer; and if there is at least one
waiting write operation in the buffer, selecting one of the
waiting write operations and issuing it to the associated sub-
register file.

The methods described herein may be performed by a
computer configured with software in machine readable form
stored on a tangible storage medium e.g. in the form of a
computer program comprising computer readable program
code for configuring a computer to perform the constituent
portions of described methods or in the form of a computer
program comprising computer program code means adapted
to perform all the steps of any of the methods described herein
when the program is run on a computer and where the com-
puter program may be embodied on a computer readable
storage medium. Examples of tangible (or non-transitory)
storage media include disks, thumb drives, memory cards etc.
and do not include propagated signals. The software can be
suitable for execution on a parallel processor or a serial pro-
cessor such that the method steps may be carried out in any
suitable order, or simultaneously.

The hardware components described herein may be gen-
erated by a non-transitory computer readable storage medium
having encoded thereon computer readable program code.

This acknowledges that firmware and software can be
separately used and valuable. It is intended to encompass
software, which runs on or controls “dumb” or standard hard-
ware, to carry out the desired functions. It is also intended to
encompass software which “describes” or defines the con-
figuration of hardware, such as HDL (hardware description
language) software, as is used for designing silicon chips, or
for configuring universal programmable chips, to carry out
desired functions.

The preferred features may be combined as appropriate, as
would be apparent to a skilled person, and may be combined
with any of the aspects of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the invention will be described, by way of
example, with reference to the following drawings, in which:

FIG. 1 is a schematic diagram of an example single-
threaded out-of-order processor;

FIG. 2 is a schematic diagram of an example register file of
FIG. 1,

FIG. 3 is a schematic diagram of example logic units for
controlling read/write access to a sub-register file of FIG. 2;

FIG. 4 is a flowchart of an example method for writing to
and reading from the register file of FIG. 2;

FIG. 5 is a flowchart of an example method for resolving
conflicts between read and write operations issued to the
same sub-register file of the register file of FIG. 2 in the same
clock cycle;

US 9,304,934 B2

3

FIG. 6 is a schematic diagram of an example multi-
threaded out-of-order processor;

FIG. 7 is a schematic diagram of an example register file of
FIG. 6;

FIG. 8 is a schematic diagram of example logic units for
controlling read/write access to a sub-register file of FIG. 7;

FIG.9is aflowchart of a first example method for resolving
conflicts between read and write operations issued to the
same sub-register file of the register file of FIG. 7 in the same
clock cycle; and

FIG. 10 is a flowchart of a second example method for
resolving conflicts between read and write operations issued
to the same sub-register file of the register file of FIG. 7 in the
same clock cycle.

Common reference numerals are used throughout the fig-
ures to indicate similar features.

DETAILED DESCRIPTION

Embodiments of the present invention are described below
by way of example only. These examples represent the best
ways of putting the invention into practice that are currently
known to the Applicant although they are not the only ways in
which this could be achieved. The description sets forth the
functions of the example and the sequence of steps for con-
structing and operating the example. However, the same or
equivalent functions and sequences may be accomplished by
different examples.

Embodiments described herein relate to techniques for
reducing the number of read and write ports to a shared
register file used in an out-of-order processor. Specifically, in
the embodiments described herein the register file is divided
into a plurality of smaller discrete sub-register files, each with
its own buffer. Each sub-register file comprises a portion of
the physical registers of the register file. During the renaming
stage each architectural register is assigned a specific sub-
register file and a physical register within that sub-register
file. Writes to each sub-register file are then collected in the
corresponding buffer and trickled out into the sub-register
file.

Reference is now made to FIG. 1 which illustrates a single-
threaded out-of order processor 100 wherein a shared register
file 102 is divided into a plurality of smaller, discrete sub-
register files each with its own buffer. Each sub-register file
comprises a portion of the physical registers of the register
file. In the example shown in FIG. 1, the register file 102 is
divided into six sub-registers files A, B, C, D, E and F, how-
ever, it will be evident to a person of skill in the art that the
register file 102 may have more or fewer sub-register files. An
example register file 102 will be described in more detail in
reference to FIG. 2.

Although the processor 100 of FIG. 1 comprises a single
shared register file 102, in other examples the processor may
comprise multiple shared register files (e.g. a shared register
file for floating point architectural registers and a shared
register file for integer architectural registers). In these
examples, one or more of the shared register files may be
configured in a similar manner as the shared register file 102
of FIG. 1.

The processor 100 comprises a fetch stage 104 configured
to fetch instructions from a program (in program order) as
indicated by a program counter (PC) and a decode and renam-
ing stage 106 arranged to interpret the instructions and per-
form register renaming. Each instruction may comprise a
register write operation; one more register read operations;
and/or an arithmetic or logical operation. A register write
operation writes to a destination register and a register read

10

20

30

40

45

55

4

operation reads from a source register. During the decode and
renaming stage, each architectural register referred to in an
instruction (e.g. each source and destination register) is
replaced (or renamed) with a physical register.

For write operations, each architectural register (e.g. des-
tination register) is allocated/assigned a specific sub-register
file and a physical register within that sub-register file. In
some cases the sub-register files are allocated to architectural
registers on a round-robin basis (e.g. A, B,C,D,E,F, A, B, C,
D,E, F, A ... etc). In some cases, each instruction is allo-
cated/assigned a specific sub-register file regardless of
whether the instruction comprises a write operation. Where
the instruction does not comprise a write operation, the allo-
cation is ignored. In other cases, only instructions comprising
a write operation are allocated/assigned a specific sub-regis-
ter file.

Any allocation may be stored in a register renaming map
108 which is a data structure showing the mapping between
each architectural register and the sub-register file and physi-
cal register most recently allocated. Then, for read operations
the correct physical register for a particular architectural reg-
ister (e.g. source register) can be determined from the register
renaming map 108.

In the example of FIG. 1, the register renaming map 108
comprises four entries indicating the sub-register file and
physical register identifiers, indexed by the architectural reg-
ister identifiers. For example, architectural register 0 cur-
rently maps to sub-register file A, physical register 6; archi-
tectural register 1 currently maps to sub-register file F,
physical register 5; architectural register 2 currently maps to
sub-register file C, physical register 1; and architectural reg-
ister 3 currently maps to sub-register file A, physical register
3.

When an instruction passes through the decode and renam-
ing stage 106, it is inserted into a reorder buffer 110 (ROB)
and any write operation within the instruction is stored in the
register file 102 buffer associated with the appropriate sub-
register file. At this point the write operation is not ready to be
issued to the appropriate sub-register file as the data to be
written is unknown.

The re-order buffer 110 is a buffer that enables the instruc-
tions to be executed out-of-order, but committed in-order. The
re-order buffer 110 holds the instructions that are inserted into
it in program order, but the instructions within the ROB can be
executed out of sequence by a plurality of out-of-order pipe-
lines 112.

In some examples, the re-order buffer 110 can be formed as
a circular buffer having a head pointing to the oldest instruc-
tion in the ROB 110, and a tail pointing to the youngest
instruction in the ROB 110. In other words, instructions are
output from the head of the ROB 110, and the head is incre-
mented to the next instruction in the ROB. The instructions
stored in the re-order buffer 110 may be indexed by an ROB
ID which specifies the order of the instruction in the re-order
buffer.

The out-of-order pipelines 112 typically each access the
shared register file 102 to perform reads of and/or writes to the
physical registers. When the out-of-order pipelines wish to
perform a write operation, the value to be written is provided
to the register file 102 by the out-of-order pipelines 112. The
value to be written is then stored in the appropriate register file
102 buffer along with the corresponding write operation.
Once the write value has been received and stored in the
buffer for a particular write operation, the write operation is
ready to be issued to the appropriate sub-register file. The
ready write operations in each buffer are then trickled out to
the associated sub-register file.

US 9,304,934 B2

5

Once executed, instructions are output from the re-order
buffer 110 in program order to a commit stage 114. The
commit stage 114 commits the results of the instructions to
the register/memory. The commit stage 114 commits N
instructions per clock cycle where N is based on the configu-
ration of the processor 100. For example a four-way super-
scalar processor may commit four instructions per clock
cycle. In another example, a three-way dual-threaded proces-
sor may commit six instructions per clock cycle.

The processor 100 may also comprise a branch predictor
116, which is configured to predict which direction the pro-
gram flow will take in the case of instructions known to cause
possible flow changes, such as branch instructions. Branch
prediction is useful as it enables instructions to be specula-
tively executed by the processor 100 before the outcome of
the branch instruction is known. The branch predictor 116 can
receive inputs from the fetch stage 104 and decode and
renaming stage 106 relating to new instructions, and input
from the out-of-order pipelines 112 and commit stage 114.

When the branch predictor 116 predicts the program flow
accurately, this improves performance of the processor. How-
ever, if the branch predictor 116 does not correctly predict the
branch direction, then a misprediction occurs which needs to
be corrected before the program can continue. To correct a
misprediction, the speculative instructions sent to the ROB
110 are abandoned, and the fetch stage 104 starts fetching
instructions from the correct program branch.

Reference is now made to FIG. 2 which illustrates an
example register file 102 of FIG. 1. The register file 102 is
divided into a plurality of smaller discrete sub-register files
202-212. The example register file 102 of FIG. 2 is divided
into six sub-register files 202-212; however, it will be evident
to a person of skill in the art that the register file may have
more or fewer sub-register files.

In some cases the number of sub-register files 202-212 is
equal to the number of instructions that can be committed by
the commit stage 114 per clock cycle. For example, a four-
way superscalar processor which may issue four instructions
per clock cycle may have a register file that is divided into four
sub-register files. Similarly, a three-way dual-threaded pro-
cessor which may issue six instructions per clock cycle may
have a register file that is divided into six sub-register files.

The register file 102 also comprises one buffer 214-224 for
each sub-register file 202-212. Any write operations to a
particular sub-register file 202-212 are stored in the corre-
sponding buffer 214-224 and written at a later time to the
sub-register file 202-212. Each buffer 214-224 comprises a
component or set of components (not shown), such as hard-
ware registers (e.g. flip-flops), for storing write operations,
and a logic unit (not shown) for retrieving write operations
from the component or set of components.

In some cases each buffer 214-224 has a similar structure to
the ROB 110 of FIG. 1. Specifically, each bufter 214-224 may
be implemented as a circular buffer with a head and a tail.

In some cases the sum of the size of the buffers 214-224
may be equal to the size of the ROB 110. This allows the
buffers 214-224 to hold any number of outstanding write
operations, ensuring that the buffers 214-224 don’t overflow.
The size of the ROB 110 may be divided equally so that each
of the buffers is the same size. In other cases the cumulative
size of the buffers 214-224 may be greater than the size of the
ROB 110.

In some cases, the write operations are stored in the buffers
214-224 in the order in which they are received. Since the
write operations are typically provided to the buffers 214-224

20

35

40

45

6

by the decode and renaming stage 106 in program order the
write operations may be stored in the buffers 214-224 in
program order.

In other cases, the write operations are stored in the buffers
214-224 in an order specified by IDs associated with the write
operations. For example, the write operations may be pro-
vided to the register file with the ROB ID of the associated
instruction which allows the write operations be placed in the
buffer in the same order as the associated instructions in the
ROB 110 (e.g. in program order).

In cases where there are six sub-register files 202-212 and
the sub-register files 202-212 are allocated to each instruction
on a round-robin basis the write operation associated with
every 67 instruction in the ROB 110 is stored in buffer A. For
example, if an instruction is placed in position 0 of the ROB
110 the corresponding write operation may be placed in posi-
tion O of, for example, buffer A 214. The write operations
corresponding to the instructions in positions 1 to 5 of the
ROB 110 may then be placed in position 0 of buffers B to F
216-224 respectively. The write operations corresponding to
the instructions in positions 6 to 11 of the ROB 110 may then
be placed in position 1 of buffers A to F 214-224 respectively.

Accordingly, the specific buffer for a write operation may
be determined by performing a modulo X operation on the
received ID (e.g. ROB ID) where X is the number of sub-
register files 202-212. In the example shown in FIG. 2 there
are six sub-register files thus a modulo 6 operation may be
performed on the received ID (e.g. ROB ID) to determine the
specific buffer for storing the write operation. An integer-
divide operation may then be performed on the ID (e.g. ROB
ID) to determine the position or slot in the buffer for the write
operation. As is known to those of skill in the art, an integer-
divide operation divides the integer portion of a number by a
number without the remainder. For example, a write opera-
tion with an ID of 9 may be put in buffer D (9 modulo 6=3) in
slot 1 (9 integer divide 6=1)

Since modulo and integer-divide operations are hardware
intensive, if X is a power of two then the position or slot in the
buffer for the write operation may be determined by dropping
Y bits from the received ID (e.g. ROB ID) where Y is log(X)
divided by log(2). Where X is not a power of two then a
hardware lookup table may be used to determine the position
(e.g. buffer index) from the ID (e.g. ROB ID).

Storing the write operations in the buffer in program order
allows the values to be written to the registers to be received
by the buffers 214-224 in any order and placed in the buffer in
program order. Once the write operations are organized in
program order they can easily be issued to the associated
sub-register file 202-212 in program order.

In some cases each write operation in a buffer 214-224 is
issued to the corresponding sub-register file 202-212 at com-
mit time at the latest. This is desirable because after this time
there is a chance that the data in the buffer may be overwritten
by a subsequent write operation. In other cases write opera-
tions may be allowed to be issued to the corresponding sub-
register file 202-212 after commit time.

Since there are N instructions committed in each clock
cycle, in the worst case scenario all N committed instructions
will have written to a register in the last clock cycle (e.g.
commit time for the instructions). It is desirable to have all N
write operations associated with a committed instruction
written to their corresponding sub-register files 202-212 in
the same clock cycle (e.g. the commit cycle) so that the data
in the buffers related to these write operations is not subse-
quently overwritten in the next clock cycle.

In cases where the register file 102 is divided into N sub-
register files 202-212 (e.g. as shown in FIG. 2) and the sub-

US 9,304,934 B2

7

register files 202-212 are allocated to the instructions in pro-
gram order on a round-robin basis, each of the committed
instructions will have written to a different sub-register file
thus allowing all N write operations to be issued to their
corresponding sub-register files 202-212 in the same clock
cycle. In cases where the number of sub-register files 202-212
is less than N, the processor 100 may be configured to stall a
particular commit when all the write operations associated
with the committed instructions cannot be written to the sub-
register files 202-212 in the same cycle.

In some cases (e.g. as shown in FIG. 2) each sub-register
file 202-212 only has one read/write port. In these cases each
sub-register file may be implemented in Random Access
Memory (RAM) instead of flip-flops saving on area and
power for large register files. In other cases one or more of the
sub-register files 202-212 may have multiple input ports.

Reference is now made to FIG. 3 which illustrates example
logic units (read logic unit 302 and arbitration logic unit 304)
for controlling access (read and writes) to a sub-register file
202.

Although FIG. 3 shows the logic units 302 and 304 for a
single sub-register file 202 it will be evident to a person of
skill in the art that similar logic units may be used to control
access to each of the other sub-register files. In some cases
there may be a single read logic unit 302 that controls reads all
the sub-register files.

The buffer 214 receives write operations for the sub-regis-
ter file 202 from the decode and renaming stage 106 on a
dispatch port 226 and stores the received write operations in
the buffer 214. Each write operation received from the decode
and renaming stage 106 typically specifies the register to be
written to (e.g. register number), but does not specify the data
to be written to the register.

In some cases the write operations are stored in the buffer
214 in the order in which they received. Since the decode and
renaming stage 106 typically provides the write operations in
program order the write operations may be stored in the buffer
214 in program order.

In other cases the write operations are stored in the buffer
214 in a particular order (e.g. program order) based on IDs
associated with each write operation. In some cases, the ID is
the ROB ID of the corresponding instruction so that the write
operations are placed in the buffer 214 in the same order (e.g.
program order) as the corresponding instruction in the ROB
110. For example, as described above, if the instruction is
stored at index or position 0 in the main ROB 110 then the ID
may indicate that the write operation is to be stored at index or
position O in the buffer 214.

The buffer 214 also receives a write value for each write
operation stored in the buffer 214 from the out-of-order pipe-
lines 112 on a write port 228 and stores the received write
values in the buffer 214. Each write value is matched to its
corresponding write operation in the butfer 214 using an ID
provided with the write value. In some cases the ID is the
ROB ID of the associated instruction. In other cases the ID is
the register number. Once the write value for a particular write
operation has been stored in the buffer 214 that particular
write operation becomes a waiting write operation since it is
waiting to be issued to/completed by the corresponding sub-
register file. Once a waiting write operation has been issued
to/completed by the corresponding sub-register file it
becomes an issued or completed write operation.

Each scheduling cycle the buffer 214 determines whether
there are any waiting write operations in the buffer 214. The
term “scheduling cycle” is used herein to mean the time at
which operations (i.e. read and/or write operations) are sub-
mitted to a sub-register file. In some cases there is a schedul-

10

15

20

25

30

35

40

45

50

55

60

65

8

ing cycle each clock cycle. However, in other cases schedul-
ing cycles may occur more or less often than each clock cycle.
If there is at least one waiting write operation in the buffer
214, the buffer 214 selects one of the waiting write operations
and issues it to the corresponding sub-register file 202. In
some cases issuing the write operation to the corresponding
sub-register file may comprise sending the selected write
operation to a multiplexer 306. In other cases issuing the write
operation to the corresponding sub-register file may comprise
sending the selected write operation directly to the sub-reg-
ister file 202.

In some cases, the buffer 214 is configured to select the
oldest waiting write operation in the buffer 214. In other
cases, the buffer 214 may be configured to use other criteria to
select one of the waiting write operations in the buffer 214.

The read logic unit 302 is responsible for controlling reads
of'the sub-register file 202. Since the sub-register file 202 may
not comprise the most recent updates when the read is
executed (e.g. there may be write operations in the buffer 214
that have not been written to the sub-register file 202), when
the read logic unit 302 receives a read operation for the
sub-register file 202 on a read port 308 the read logic unit 302
may issue the read operation to both the buffer 214 and the
sub-register file 202. In some cases issuing the read operation
to the sub-register file 202 may comprise sending the read
operation to the multiplexer 306. In other cases, issuing the
read operation to the sub-register file may comprise sending
the read operation to the sub-register file 202 directly.

When the buffer 214 receives the read operation from the
read logic unit 302 it searches for a write operation in the
buffer 214 that matches the read operation (e.g. relates to the
register specified in the read operation). Ifthe buffer 214 finds
a match and the match is a waiting write operation or a
completed write operation (e.g. the write value has been
received for the write operation) then the buffer 214 provides
the write data corresponding to the matching write operation
to the read logic unit 302. The read logic unit 302 then
provides the received write data to the out-of-order pipelines
112. If the buffer 214 finds a match, but the match is not a
waiting write operation or a completed write operation (e.g.
the write value has not been received for the write operation)
then the bufter 214 may return an error message to the read
logic unit 302 indicating that the register is not ready to be
read. The read logic unit 302 may then relay the error message
to the out-of-order pipelines 112. If the buffer 214 is unable to
find a match then the buffer 214 may return an error message
to the read logic unit 302 indicating that the read failed. The
read logic unit 302 may then wait to receive the read data from
the sub-register file 202 and relay this to the out-of-order
pipelines 112.

When the cumulative size of the buffers 214-224 is equal to
the size of the ROB 110 the buffer 214 may only find one write
operation in the buffer 214 that matches the read operation
(e.g. relates to the register specified in the read operation).
Where, however, the cumulative size of the buffers 214-224 is
greater than the size of the ROB 110 the buffer 214 may find
more than one write operation in the buffer 214 that matches
the read operation (e.g. relates to the register specified in the
read operation). Where the buffer 214 identifies more than
one matching write operation, the buffer 214 may be config-
ured select the write data from the newest write operation (as
determined by its location in the buffer 214) and provide this
to the read logic unit 302.

In some cases, the read logic unit 302 may be configured to
issue the read operation to the buffer and sub-register files in
the same scheduling cycle (e.g. clock cycle). In other cases,
the read logic 302 may be configured to issue the read opera-

US 9,304,934 B2

9

tion to the buffer 214 and sub-register file 202 on different
scheduling cycles (e.g. clock cycles). For example, the read
logic 302 may be configured to issue the read operation to the
buffer 214 on a first clock cycle and only issue the read
operation to the sub-register file 202 on a subsequent clock
cycle if no match for the specified register was found in the
buffer 214. In these cases the total number of sub-register file
reads may be reduced, but those reads which are not resolved
by the data in the buffer may take longer to complete.

Where the sub-register file 202 has only a single input port
(as shown in FIGS. 2 and 3), only one read or write of the
sub-register file 202 can be completed in a single scheduling
cycle (e.g. clock cycle). In these cases the arbitration logic
unit 304 is responsible for resolving conflicts between reads
and writes that are issued to the same sub-register file in the
same scheduling cycle (e.g. both a read operation and a write
operation are received at the multiplexer 306 in the same
clock cycle).

In some cases, the arbitration logic unit 304 may be con-
figured to control the multiplexer 306 so that if there is a
conflict—e.g. both a read and a write operation received at the
multiplexer 306 in the same clock cycle—the read is given
priority (e.g. the read is selected and sent to the sub-register
file 202) unless it is commit time for the write operation.
Where it is commit time for the write operation, the write
operation is given priority (e.g. the write operation is selected
and sent to the sub-register file 202). Where there is no con-
flict—e.g. where there is only a single read or a write opera-
tion received at the multiplexer 306—then the read or write
operation received at the multiplexer 306 is selected and sent
to the sub-register file 202.

In some cases the arbitration logic unit 304 may determine
whether a write operation has reached commit time based on
data received from the commit stage 114 on a commit port
310. The data provided on the commit port 310 may comprise
a list of instructions that are being committed during the
current clock cycle. For example, the data provided on the
commit port 310 may comprise a list of ROB IDs that have
committed. In some cases these IDs are analyzed to determine
the specific buffer(s) they relate to and the specific position
they are stored (e.g. index) in the buffer(s). The arbitration
logic unit 304 may then compare the index identified by the
ROB ID to the index for the write operation to determine if
they match. If they match then it may be determined that the
write operation has reached commit time.

In other cases, the ROB IDs received from the commit
stage 114 are converted to work out which sub-register file
they are associated with and they are compared with a counter
for the specific sub-register file to determine if the write
operation has reached commit time. In particular, in these
cases each sub-register file may comprise logic (not shown)
that is incremented each time the sub-register file is written to
and is decrement when an instruction associated with the
sub-register file is committed. Each counter essentially
counts how many completed write operations have not
reached commit time. When a particular sub-register file
receives data from the commit stage 114 indicating that an
instruction associated with the sub-register file is being com-
mitted and the counter for that particular sub-register file is
zero then the arbitration logic unit 304 may determine that it
is commit time for the write operation.

After a write operation has been written to the sub-register
file 202 it may remain in the buffer 214 until it has been
committed during the commit phase 114 or until the buffer
214 slot is required for a new write operation. This allows
reads to be done from the buffer 214 instead of the sub-
register file 202 since it is typically easier and faster to do a

5

10

15

20

25

30

35

40

45

50

55

60

65

10

buffer read than a sub-register file read. However, once a write
operation has been written to the sub-register file 202 a flag
may be set in the buffer 214 indicating that the write operation
has already been written to the sub-register file 202. This
ensures that the write operation will not be selected again to
be written to the sub-register file 202.

The buffers 214-224, read logic unit 302, arbitration logic
unit 304 and multiplexer 306 described herein may be imple-
mented using any suitable hardware logic.

Although FIGS. 2 and 3 show sub-register files with a
single input port, in other embodiments each sub-register file
may comprise two input ports. The first input port may be
used to read from the sub-register file and the second input
port may be used to write to the sub-register file. In these
embodiments the register file may not have arbitration logic
units to deal with conflicts between read and writes to the
same sub-register file. This may reduce read delays over the
single-ported sub-register file embodiment shown in FIGS. 2
and 3.

Reference is now made to FIG. 4, which illustrates an
example method 400 for writing data to and reading data from
a register file which has been sub-divided into a plurality of
smaller, discrete sub-register files. At step 402, an instruction
is fetched and decoded. As described above, each instruction
may comprise a register write operation; one or more register
read operations; and/or an arithmetic or logical operation.
Once the instruction has been fetched and decoded, the
method 400 proceeds to step 404.

At step 404, any architectural register referred to in the
instruction is replaced or renamed with a physical register.
For write operations, replacing the architectural register (e.g.
destination register) with a physical register may comprise
assigning a particular sub-register file and a physical register
within that sub-register file to the architectural register. In
some cases the sub-register files are assigned on a round-
robin basis. For example, if there are six sub-register files
labelled A to F as shown in FIG. 2 the sub-register files may
be assigned in the following order A, B, C, D, E, F, A,
B, C...etc. Any assignment of a sub-register file and physical
register to an architectural register may be stored in the reg-
ister renaming map 108 as described above in reference to
FIG. 1.

For read operations, replacing the architectural register
(e.g. source register) with a physical register may comprise
determining the particular sub-register file and a physical
register most recently assigned to the architectural register
and replacing the architectural register with that sub-register
file and physical register. In some cases, the particular sub-
register file and physical register most recently assigned to the
architectural register is obtained from a register renaming
map (e.g. register renaming map 108). Once the architectural
registers have been renamed to a physical register, the method
400 proceeds to steps 406 and 408.

At step 406, any write operation in the instruction is dis-
patched to the register file 102 where it is stored in the appro-
priate buffer (e.g. the buffer associated with the sub-register
file assigned in step 404). As described above, in some cases
each write operation may be provided to the buffer with an ID
(e.g. ROB ID) which notifies the buffer what position or slot
in the buffer the write operation is to be stored. In other cases,
the write operations are stored in the buffer in the order (e.g.
program order) in which they are received. Once the write
operation has been stored in the appropriate buffer, the
method 400 proceeds to step 414.

At step 408, the instruction is provided to the out-of-order
pipelines 112 for execution. At step 410 the out-of-order
pipelines 112 provide the write value for any write operation

US 9,304,934 B2

11

in the instruction to the register file 102. At step 412 the write
value provided in step 410 is stored in the appropriate buffer
with the associated write operation. The specific buffer and
write operation may be identified by information provided to
the register file 102 along with the write value. In some cases
the information may comprise the specific sub-register and
register numbers. In the other cases the information may
comprise an ID (e.g. ROB ID of the associated instruction)
that can be used to determine the specific buffer and slot.
Once a write value has been received and stored for a write
operation, the write operation is said to be a waiting write
operation. Once the write value has been received and stored
the method 400 proceeds to step 414.

At step 414, each buffer determines whether it comprises
any waiting write operations. [fa buffer comprises at least one
waiting write operation, the buffer selects one of the waiting
write operations and issues the selected write operation to the
corresponding sub-register file. In some cases issuing the
selected write operation to the sub-register file comprises
providing it to a multiplexer (e.g. multiplexer 306 of FIG. 3)
where it waits to be sent to the sub-register file on the next
available scheduling cycle (e.g. clock cycle). In some cases
the next available scheduling cycle (e.g. clock cycle) is the
current scheduling cycle.

As described above in reference to FIG. 3, in some cases
each write operation in the buffer may be associated with a
flag or bit which indicates whether or not the write operation
has been written to the associated sub-register file. In these
cases the buffer may be configured to only select a write
operation whose flag or bit indicates that it has not already
been written to the corresponding sub-register file. In some
cases the buffer may be configured to select the oldest write
operation in the buffer that is waiting to be written to the
sub-register file. In other cases, the buffer may use other
criteria to select a waiting write operation. Once a waiting
write operation has been selected and issued to the sub-reg-
ister file, the method 400 may proceed to step 502 of method
500.

At step 416, any read operations forming part of the
instruction are issued to the register file 102. Once the read
operation(s) have been issued to the register file 102 the
method 400 proceeds to step 418.

Atstep 418, the read operation(s) is/are issued to the appro-
priate buffer(s) (e.g. the bufter(s) associated with the sub-
register file determined in step 404). Once all read operations
have been issued to the appropriate buffer(s), the method
proceeds to step 420.

Atstep 420, the read operation(s) is/are issued to the appro-
priate sub-register file (e.g. the sub-register file determined in
step 404). In some cases issuing the read operation to the
sub-register file comprises issuing the read operation to a
multiplexer (e.g. multiplexer 306 of FIG. 3) associated with
the sub-register file where it waits to be sent to the appropriate
sub-register file.

In some cases steps 418 and 420 are completed in the same
scheduling cycle (e.g. clock cycle). Specifically, in some
cases the read operation is issued to the appropriate bufter(s)
(e.g. the buffer(s) associated with the sub-register file deter-
mined in step 404) and the appropriate sub-register file (e.g.
the sub-register file determined in step 404) in the same
scheduling cycle (e.g. clock cycle). In other cases steps 418
and 420 may be performed in different scheduling cycles (e.g.
clock cycles). For example, step 418 may be completed in a
first clock cycle and step 420 may only be completed in a
subsequent clock cycle if is determined that the associated
buffer(s) does/do not contain an entry for the register speci-

10

15

20

25

30

35

40

45

50

55

60

65

12

fied in the read operation. In these cases, read operations are
only sent to the appropriate sub-register file if the buffer(s)
cannot satisfy the request.

Once step 420 is complete, the method may proceeds to
step 502 of method 500 where conflicts between reads and
writes are resolved.

Reference is now made to FIG. 5, which illustrates a
method 500, which may be executed by the arbitration logic
unit 304 of FIG. 3, for resolving conflicts between operations
issued to the same sub-register file in the same scheduling
cycle (e.g. clock cycle). At step 502, the inputs (e.g. read
and/or write operations) to the multiplexer (e.g. multiplexer
306) associated with the sub-register file are read. Once the
inputs to the multiplexer are read, the method 500 proceeds to
step 504.

At step 504, it is determined whether it is commit time for
any write operation input to the multiplexer 306. In some
cases determining whether it is commit time for a write opera-
tion comprises comparing data received from the commit
stage 114 to at least a portion of the write operation. For
example, as described above in reference to FIG. 3 determin-
ing whether it is commit time for a write operation may
comprise analyzing ROB IDs of committed instructions from
the commit phase 114 to the buffer ID. In other cases, deter-
mining whether it is commit time for a write operation may
comprise analyzing a counter value associated with the sub-
register file. If it is determined that it is commit time for a
write operation input to the multiplexer 306 then the method
proceeds to step 506. If, however, it is determined that it is not
commit time for a write operation input to the multiplexer 306
then the method 500 proceeds to step 508.

At step 506, the write operation that has reached commit
time is submitted to the appropriate sub-register file. If there
is a conflicting read operation it is considered for submission
to the sub-register file in the next scheduling cycle (e.g. clock
cycle). For example, in some cases it may be input into the
multiplexer 306 in the next scheduling cycle (e.g. clock
cycle). If there is no conflicting write operation that has
reached commit time in the next scheduling cycle (e.g. clock
cycle), it will be submitted to the appropriate sub-register file
in the next scheduling cycle (e.g. clock cycle). Once the write
operation has been submitted to the appropriate sub-register
file the method 500 ends.

At step 508, it is determined whether there is a read opera-
tion that has been input to the multiplexer 306. If there is a
read operation that has been input to the multiplexer 306 then
the method 500 proceeds to step 510 where the read operation
is submitted to the sub-register file. If there is no read opera-
tion that has been input to the multiplexer 306 then the
method 500 proceeds to step 506 where the write operation is
submitted to the sub-register file.

At step 510, the read operation is submitted to the appro-
priate sub-register file. If there is a conflicting write operation
it may be considered for submission to the sub-register file in
the next scheduling cycle (e.g. clock cycle) if none of the
older write operations in the same buffer become waiting
write operations in the next scheduling cycle (e.g. the next
clock cycle). For example, in some cases the conflicting write
operation will be selected from the buffer in the next clock
cycle and input into the multiplexer 306 for issue to the
sub-register file. If there is no conflicting read operation in
that clock cycle then it will be submitted to the appropriate
sub-register file. Once the read operation has been submitted
to the appropriate sub-register file the method 500 ends.

This method 500 may be repeated each scheduling cycle
(e.g. each clock cycle).

US 9,304,934 B2

13

This method 500 gives priority to read operations unless it
is commit time for a conflicting write operation. Accordingly,
the likelihood of a read having to wait for a write may be
reduced by issuing write operations to the multiplexer 306
(and thus the sub-register file) as soon as possible instead of
waiting until commit time.

While method 500 discloses giving priority to read opera-
tions unless it is commit time for a conflicting write operation,
in other embodiments the arbitration logic unit 304 may be
configured to give priority to read operations unless a con-
flicting write operation is about to be overwritten in the buffer.
Inthese embodiments, the method executed by the arbitration
logic unit 304 may be similar to method 500, but instead of
determining in step 504 whether it is commit time for a write
operation, it may be determined whether the write operation
input to the multiplexer 306 is about to be overwritten by a
new write operation dispatched from the decode and renam-
ing stage. Only if the write operation input to the multiplexer
306 is about to be overwritten by a new write operation is the
write operation given priority over a conflicting read opera-
tion.

As described above, in some cases the decode and renam-
ing stage provides the ROB ID to the register file 102 in
addition to providing the write operation. In these cases the
arbitration logic unit 304 may be configured to determine
whether the write operation input to the multiplexer 306 is
about to be overwritten by a new write operation received
from the decode and renaming stage by determining the
buffer slot of the new write instruction from the ROB ID and
comparing this to the buffer slot (e.g. buffer index) of the
write instruction input to the multiplexer 306. If the two buffer
slots match then the new write operation will overwrite the
write operation input to the multiplexer 306 in the current
clock cycle. Accordingly, to ensure that the data for the write
operation input to the multiplexer 306 is not lost, the write
operation input to the multiplexer 306 is submitted to the
sub-register file.

In other cases, where the buffers are implemented as cir-
cular buffers (e.g. with a head and tail), the arbitration logic
unit 304 may be configured to determine a write operation is
about to be overwritten if the buffer slot after the tail of the
circular buffer contains a waiting write operation. In particu-
lar, if the write operation is situated in the slot after the tail of
the circular buffer then any new write operation dispatched to
the buffer from the decode and renaming stage will be written
to that slot and will overwrite the write operation situated
therein. Accordingly, to ensure that the write operation is not
overwritten before it is submitted, it is submitted to the sub-
register file.

In cases where the cumulative size of the buffers is equal to
the size of the ROB 110 this overwrite method allows more
reads to be prioritized thus improving system performance
over the commit-time method 500 described in reference to
FIG. 5. For example, future instructions may be waiting on
data from read operations before they can execute thus pri-
oritizing read operations over write operations may speed up
the execution of a program. In contrast, delaying the submis-
sion of write operations to the sub-register file may not affect
other instructions since the write data can be read from the
buffers instead.

Further system improvements over the commit-time
method 500 may be realized where the cumulative size of the
buffers is greater than the size of the ROB 110. In particular,
by increasing the size of the buffers, the time between a write
operation becoming a waiting write operation and having to
submit that write operation to the sub-register file is
increased. This allows more time for the write operation to be

20

25

30

40

45

55

60

14

submitted to the sub-register file and thus decreases the
chances of having to stall a read operation for a write opera-
tion.

FIGS. 6 to 10 will be used to illustrate how the techniques
and methods described herein may be applied to a multi-
threaded out-of-order processor.

Reference is now made to FIG. 6 which illustrates a sche-
matic of a multi-threaded out-of order processor 600. The
processor 600 comprises two threads 602 and 604 which will
be referred to herein as thread 0 and thread 1 respectively.
Each thread 602 and 604 comprises a fetch stage 606 or 608,
a decode and renaming stage 610 or 612 which maintains a
register renaming map 614 or 616, a re-order buffer 618 or
620, a commit stage 622 or 624 and a branch predictor 626 or
627 as described above inreference to FIG. 1. The threads 602
and 604 share out-of-order pipelines 628 and one or more
register files 630.

Reference is now made to FIG. 7 which illustrates an
example register file 630 of FIG. 6. The register file 630 of
FIG. 7 is similar to the register file 102 of FIG. 2 in that it is
divided into a plurality of smaller, discrete sub-register files
702-712. Like the example register file 102 of FIG. 2, the
example register file 630 of FIG. 7 is divided into six sub-
register files 702-712; however, it will be evident to a person
of skill in the art that the register file 630 may have more or
fewer sub-register files.

In some cases the number of sub-register files is equal to
the number of instructions that can be committed by the
commit stages 622 and 624 per clock cycle. For example, a
four-way superscalar processor which may issue four instruc-
tions per clock cycle may have a register file that is divided
into four sub-register files. Similarly, a three-way dual-
threaded processor which may issue six instructions per clock
cycle may have a register file that is divided into six sub-
register files.

Since each thread 602 and 604 may commit at different
speeds, the register file 630 of FIG. 7 has a plurality of buffers
714-736 for each sub-register file 702-712. Specifically each
sub-register file 702-712 has one bufter for each thread in the
processor 600. The example multi-threaded processor 600
shown in FIG. 6 comprises two threads 602 and 604 (thread 0
and thread 1) thus the register file 630 has two buffers 714-
736 for each sub-register file 702-712. It will be evident to a
person of skill in the art that the register file 630 may have
more or fewer buffers per sub-register file depending on the
number of threads in the processor.

Any writes to a particular sub-register file 702-712 are
stored in the corresponding buffers 714-736 and written at a
later time to the sub-register file 702-712.

Insome cases each buffer 714-736 has a similar structure to
the ROBs 618 and 620 of FIG. 6. Specifically, each buffer
714-736 may be implemented as a circular buffer which has a
head and a tail.

In some cases the sum of the sizes of the buffers 714-736
for aparticular thread is equal to the size of the corresponding
ROB 618 or 620. This allows the buffers 714-736 to hold any
number of outstanding write operations, ensuring that the
buffers 714-736 don’t overflow. The ROB 618 or 620 size
may be divided equally amongst the buffers 714-736 for that
thread so that all of the buffers 714-726 for that thread are the
same size. Since the two ROBs 618 and 620 may have differ-
ent sizes, the buffers for different threads may be different
sizes. In other cases the cumulative size of the buffers 714-
736 for a particular thread may be greater than the size of the
corresponding ROB 618 or 620.

In some cases, the write operations are stored in the buffers
714-736 in the order in which they are received. Since the

US 9,304,934 B2

15

write operations are typically provided to the bufters 714-736
by the decode and renaming stages 610 and 612 in program
order the write operations may be stored in the buffers 714-
736 in program order.

In other cases, the write operations are stored in the buffers
714-736 in an order specified by IDs associated with the write
operations. For example, each write operation may be pro-
vided to the register file with the ROB ID of the associated
instruction which allows the write operation be placed in the
buffer in the same order as the associated instruction in the
ROB 618 or 620 (e.g. in program order).

Storing the write operations in the buffers in program order
allows the write values for the write operations to be received
by the buffers 714-736 out of order, but written to the corre-
sponding sub-register file in-order.

Reference is now made to FIG. 8 which illustrates logic
units (read logic unit 802 and arbitration logic unit 804) for
controlling access (reads and writes) to a sub-register file 702.
Although FIG. 8 shows the logic units for a single sub-register
file 702 it will be evident to a person of skill in the art that
similar logic units may be used to control access to each of the
other sub-register files. In some cases there may be a single
read logic unit 802 that controls reads of all the sub-register
files.

Each buffer 714 and 716 receives write operations for the
sub-register file 702 from a particular thread on a dispatch
port 738 or 740. For example, the first buffer 714 may be
configured to receive write operations from the first thread
602 (thread 0) and the second buffer 716 may be configured to
receive write operations from the second thread 604 (thread
1). Upon receiving a write operation on the dispatch port 738
or 740 the buffer 714 of 716 stores the received write opera-
tion in the buffer 714 or 716. In some cases storing the
received write operation comprises storing the register num-
ber of the register to be written to.

In some cases, the write operations are stored in the buffers
714 and 716 in the order in which they are received. Since the
write operations are typically provided to the buffers 714 and
716 by the decode and renaming stages 610 and 612 in pro-
gram order the write operations may be stored in the buffers
714 and 716 in program order.

In other cases, the write operations are stored in the buffers
714 and 716 in an order specified by IDs associated with the
write operations. For example, each write operation may be
provided to the register file with the ROB ID of'the associated
instruction which allows the write operations be placed in the
buffer in the same order as the associated instructions in the
ROB 110 (e.g. in program order).

Eachbuffer 714 and 716 also receives a write value for each
write operation stored in the bufter 714 from the out-of-order
pipelines 628 on a write port 742 or 744. The buffer 714 or
716 then stores the received write values in the buffer 714 or
716 alongside its corresponding write operation. Since the
instructions may be executed out of order the write values
may be received from the out-of-order pipelines 628 out of
order. Each write value is matched to its corresponding write
operation in the buffer 714 or 716 using an ID provided with
the write value. In some cases the ID is the ROB ID of the
associated instruction. In other cases the ID is the physical
register number. Once the write value for a specific write
operation has been stored in the buffer 714 or 716 the write
operation is considered to be waiting.

Each scheduling cycle (e.g. clock cycle) each bufter 714
and 716 determines whether it comprises any waiting write
operations. If a buffer 714 or 716 determines that it comprises
at least one waiting write operation then it selects one of the
waiting write operations and issues the selected write opera-

10

15

20

25

30

35

40

45

50

55

60

65

16

tion to the sub-register file 702. In some cases issuing the
selected sub-register file comprises providing the selected
write operation to a multiplexer 806. In some cases, the buff-
ers 714 and 716 are configured to select the oldest write
operation waiting in the buffer 714 or 716. In other cases, the
buffers 714 and 716 may be configured to select a waiting
write operation using other criteria.

The read logic unit 802, similar to the read logic unit 302 of
FIG. 3, is responsible for controlling reads of the sub-register
file 702. Since the sub-register file 702 may not comprise the
most recent updates when the read is executed (e.g. there may
be write operations in one or more of the associated buffers
714 and 716 that have not been written to the sub-register file
702), when the read logic unit 802 receives a read operation
on a read port 808 or 809 the read logic unit 802 may be
configured to issue the read operation to at least one buffer
714 and 716 and the sub-register file 702 (via the multiplexer
806).

In some cases, the read logic unit 802 may be configured to
issue each received read operation to both of the correspond-
ing buffers 714 and 716. However, in other cases the thread
number may be provided to the read logic unit 802 along with
the read operation. In these cases, the read logic unit 802 may
only issue the read operation to one of the buffers 714 or 716
(e.g. the buffer corresponding to the identified thread). For an
example, aread operation from thread 0 may only be issued to
the first buffer 714 instead of both to the first and second
buffers 714 and 716.

Although FIG. 8 shows a single read port 808 or 809 for
each thread 602 and 604, in other cases there may be multiple
read ports (e.g. four) per thread or there may be multiple read
ports (e.g. eight) that are shared between the threads. This
allows each thread to send one or more read operations to the
read logic unit 802 in a single clock cycle.

Since the read logic unit 802 may receive more than one
read operation from a thread or from multiple threads in the
same cycle, the read logic unit 802 may be configured to
buffer or store the read operations until it is able to trickle
them out. In some cases, if the read logic unit 802 has run out
of space for storing a new read operation the read logic unit
802 may be configured to return a failure message to the
out-of-order pipelines 628. The failure message may com-
prise a single acknowledge bit that indicates if the read opera-
tion has been accepted or not. Where the read logic unit 802
does not have the ability to buffer or store read operations the
read logic unit 802 may return a failure message to the out-
of-order pipelines 628 upon receiving a read operation ifit is
unable to perform the received read operations (e.g. it has
received multiple read operations in the same cycle).

The read logic unit 802 may be able to issue multiple read
operations to each bufter 714 and 716 in the same clock cycle.
However, the read logic unit 802 may only be able, based on
the number of input ports to the sub-register file 702, to issue
only one read operation to a sub-register file 702 in a particu-
lar clock cycle.

When a buffer 714 or 716 receives a read operation from
the read logic unit 802 the buffer 714 or 716 looks for a write
operation in the buffer 714 or 716 that matches the read
operation (e.g. relates to the register specified in the read
operation). If the buffer 714 or 716 finds a match and the
match is a waiting write operation or a completed write opera-
tion then the bufter 714 or 716 provides the write data corre-
sponding to the matching write operation to the read logic unit
802 which provides it to the out-of-order pipelines 628. Ifthe
buffer 714 or 716 finds a match, but the match is not a waiting
write operation or a completed write operation (e.g. the write
value has not been received from the out-of-order pipelines

US 9,304,934 B2

17

628 for the write operation) then the buffer 714 or 716 may
return an error message to the read logic unit 802 indicating
that the register is not ready to be read. The read logic unit 802
may then relay the error message to the out-of-order pipelines
628. If the buffer 714 or 716 is unable to find a match then the
buffer 714 or 716 may return an error message to the read
logic unit 802 indicating that the read failed. The read logic
unit 802 may then wait to receive the read data from the
sub-register file 702 and relay this to the out-of-order pipe-
lines 628.

When the cumulative size of the buffers 714-736 for a
particular thread is equal to the size of the corresponding
ROB 618 or 620 the buffer 714 or 716 may only find one write
operation in the buffer 714 or 716 that matches the read
operation (e.g. relates to the register specified in the read
operation). Where, however, the cumulative size of the buft-
ers 714-736 for a particular thread is greater than the size of
the corresponding ROB 618 or 620 the buffer 714 or 716 may
find more than one write operation in the buffer 714 or 716
that matches the read operation (e.g. relates to the register
specified in the read operation). Where the buffer 714 or 716
identifies more than one matching write operation, the buffer
714 or 716 may be configured to select the write data from the
newest write operation (as determined by its location in the
buffer 714 or 716) and provide this to the read logic unit 802.

In some cases the read logic unit 802 may be configured to
issue the read operation to one or more of the buffers 716 and
718 and sub-register file 702 in the same scheduling cycle
(e.g. clock cycle). In other cases, the read logic 802 may be
configured to issue the read operation to one or more buffers
716 and 718 and the sub-register file in different scheduling
cycle (e.g. clock cycles). For example, the read logic unit 802
may be configured to issue the read operation to one or more
buffers 714 and 716 on a first clock cycle and only issue the
read operation to the sub-register file 702 on a subsequent
clock cycle if no match for the specified register was found in
the associated buffers 714 and 716. As described above in
reference to FIG. 3, in these cases the total number of sub-
register file accesses may be reduced, but it may take longer to
complete read operations that are not resolved by the data in
the associated buffers 714 and 716.

In cases where the sub-register file 702 has only one input
port (as shown in FIGS. 7 and 8) only one read or write to the
sub-register file 702 can be completed in a single scheduling
cycle (e.g. clock cycle). In these cases the arbitration logic
unit 804 is responsible for resolving conflicts between read
and writes that want to access the sub-register file 702 in the
same scheduling cycle (e.g. clock cycle). In some cases the
arbitration logic 804 may determine that there is a conflict by
counting the number of inputs to the multiplexer 806 (e.g.
more than 1 input=conflict, 1 or less inputs=no conflict).

In some cases, the arbitration logic unit 804 may be con-
figured to control the multiplexer 806 so that if there is a
conflict any read is given priority unless commit time for any
conflicting write has passed, or it is commit time for any
conflicting write.

Where commit time for any conflicting write operation has
passed, then the write operation for which commit time has
passed is given priority over a read operation and any other
write operation. Specifically, where commit time has already
passed for a write operation, that write operation is submitted
to the sub-register file 702. Where the sub-register files are
assigned on a round-robin basis and there are N sub-register
files (where N is the number of instructions that can be com-
mitted in a clock cycle) there will only be one write operation
for which commit time has passed in any clock cycle. Accord-

10

15

20

25

30

35

40

45

50

55

60

65

18

ingly, in these cases any write operation for which commit
time has passed is ensured to be issued to the sub-register file
702.

Where there are no conflicting write operations for which
commit time has passed, then priority is given to any conflict-
ing write operation for which it is commit time. Where it is
commit time for only one conflicting write operation, then
that write operation is given priority. Specifically, the write
operation for which commit time has arrived is submitted to
the sub-register file 702. Where, however, it is commit time
for at least two conflicting write operations then only one of
those write operations can be given priority. In these cases, the
arbitration logic unit 804 may select one of these write opera-
tions and submit it to the sub-register file 702. The arbitration
logic unit 804 may use any suitable means for selecting the
write operation to submit to the sub-register file 702. For
example, in some cases the arbitration logic unit 804 may be
configured to select the write operation from the thread with
the most outstanding write operations. Any other conflicting
write operation in which it is commit time will be given
priority in the immediately following scheduling cycle (e.g.
clock cycle).

Where there is no conflict—e.g. where there is only a single
read or write operation received at the multiplexer 806 in a
particular scheduling cycle (e.g. clock cycle)—then the read
or write received at the multiplexer 806 is submitted to the
sub-register file 702.

Like the arbitration logic unit 304 of FIG. 3, the arbitration
logic unit 804 of FIG. 8, may determine whether a write
operation has reached commit time based on data received
from the commit stages 722 and 724 on commit ports 810 and
812. The data provided on the commit ports 810 and 812 may
comprise a list of instructions (e.g. ROB IDs) that are being
committed during the current clock cycle.

After a write operation has been written to the sub-register
file 702 it may remain in the corresponding bufter 714 or 716
until it has been committed during the commit phase 622 or
624 or it has been overwritten by another write operation.
This allows reads to be done from the buffers 714 and 716
instead of the sub-register file 702 since it is typically easier
and faster to do a buffer read than a sub-register file read.
However, once a write operation has been written to the
sub-register file 702 a flag may be set in the corresponding
buffer 714 or 716 indicating that the write operation has
already been written to the sub-register file 702. This ensures
that write operation will not be selected again to be written to
the sub-register file 702.

The buffers 714-736, read logic unit 802, arbitration logic
unit 804 and multiplexer 806 described herein may be imple-
mented using any suitable hardware logic.

The method 400 described above in reference to FIG. 4 for
writing to and reading from a register file is equally applicable
to multi-threaded out-of-order processors (e.g. processor
600). For example, in some cases an instance of method 400
will be executed for each thread.

Reference is now made to FIG. 9 which illustrates a method
900, which may be executed by the arbitration logic unit 804
of FIG. 8, for resolving conflicts between operations trying to
access a sub-register file in the same scheduling cycle (e.g.
clock cycle) in a multi-threaded out-of-order processor (e.g.
processor 600). At step 902, the inputs (e.g. read and/or write
operations) to the multiplexer (e.g. multiplexer 806) associ-
ated with the sub-register file (e.g. sub-register file 702) are
read. Once the inputs to the multiplexer are read, the method
900 proceeds to step 904.

At step 904, it is determined whether commit time has
passed for any write operation input to the multiplexer. If so it

US 9,304,934 B2

19

is given priority. This situation may occur where in the pre-
vious cycle it was commit time for at least two conflicting
writes. In such a situation only one conflicting write can be
submitted to the sub-register file in the scheduling cycle (e.g.
clock cycle) and the other conflicting write is submitted to the
sub-register file in the immediately following scheduling
cycle (e.g. clock cycle). If it is determined that commit time
has passed for a write operation input to the multiplexer, then
the method 900 proceeds to step 906. If, however, it is deter-
mined that commit time has not passed for a conflicting write
operation, then the method 900 proceeds to step 908.

At step 906, the write operation for which commit time has
passed is submitted to the sub-register file for execution.

At step 908, it is determined whether it is commit time for
any write operation input to the multiplexer. In some cases
determining whether it is commit time for a write is based on
data received from the commit stages 622 and 624 to at least
a portion of the conflicting write operation(s) as described
above. If it is determined that it is not commit time for any
write operation input to the multiplexer then the method
proceeds to step 910. If, however, it is determined that it is
commit time for at least one write operation input to the
multiplexer then the method proceeds to step 916.

At step 910, it is determined whether there is a read opera-
tion input to the multiplexer. If so, the read operation is given
priority. Specifically, if it is determined there is a read opera-
tion input to the multiplexer, the method proceeds to step 912.
If, however, it is determined that there is no read operation
input to the multiplexer, then the method 900 proceeds to step
914.

At step 912, the read operation is submitted to the sub-
register file. The method 900 then ends.

At step 914, one of the write operations input to the mul-
tiplexer is selected and submitted to the sub-register file. The
method 900 then ends.

At step 916, it is determined whether it is commit time for
only one write operation input to the multiplexer. If so, that
write operation is given priority. Specifically, ifis determined
that it is commit time for only one conflicting write operation,
then the method proceeds to step 918. If, however, it is deter-
mined that it is commit time for at least two conflicting write
operations then the method 900 proceeds to step 920.

At step 918, the write operation for which commit time has
arrived is submitted to the sub-register file.

At step 920, one of the write operations for which commit
time has arrived is submitted to the sub-register file. As
described above only one operation can be submitted to the
sub-register file in a particular cycle.

Any conflicting operation that is not submitted to the sub-
register file in the current scheduling cycle (e.g. clock cycle)
is considered for submission to the sub-register file in the next
scheduling cycle (e.g. clock cycle). For example, a conflicting
read operation that is not submitted to the sub-register file in
the current clock cycle may be automatically input into the
multiplexer in the next clock cycle and if there is no conflict-
ing write operation that has reached or passed commit time in
the next clock cycle, the read operation will be submitted to
the sub-register file. Similarly, a conflicting write operation
that is not submitted to the sub-register file in the current
clock cycle may be selected by the buffer in the next clock
cycle to be input to the multiplexer. If there is no conflicting
read operation or write operation that has reached or passed
commit time in that clock cycle, then the write operation will
be submitted to the sub-register file. If the conflicting write
has reached commit time, then in the next cycle its commit
time will have passed and it will be given the highest priority
and be submitted to the sub-register file.

10

15

20

25

30

35

40

45

50

55

60

65

20

Reference is now made to FIG. 10 which illustrates a
method 1000, which may be executed by the arbitration logic
unit 804 of FIG. 8, for resolving conflicts between operations
trying to access a sub-register file in the same scheduling
cycle (e.g. clock cycle) in a multi-threaded out-of-order pro-
cessor (e.g. processor 600). At step 1002, the inputs (e.g. read
and/or write operations) to the multiplexer (e.g. multiplexer
806) associated with the sub-register file (e.g. sub-register file
702) are read. Once the inputs to the multiplexer are read, the
method 1000 proceeds to step 1004.

At step 1004, it is determined whether any write operation
input to the multiplexer is about to be overwritten. In some
cases determining whether a write operation is about to be
overwritten comprises determining if the write operation is
situated in the buffer a predetermined number of slots after
the tail of the buffer. The predetermined number of slots may
be based on the number of threads in the processor. Typically
the higher number of threads, the higher the predetermined
number of slots. For example, if the processor has two threads
the predetermined number of slots may be one, whereas if the
processor has four threads the predetermined number of slots
may be two.

If the write operation is situated in the buffer the predeter-
mined number of slots after the tail, then after the buffer
receives the predetermined number of new write operations
from the decode and renaming stage the write operation input
to the multiplexer will be overwritten. For example, if the
predetermined number of slots is one, then the write operation
input to the multiplexer will be overwritten when the buffer
receives one new write operation. Similarly, if the predeter-
mined number of slots is two, then the write operation input to
the multiplexer will be overwritten after the buffer receives
two new write operations. Accordingly, to ensure that the
write operation input to the multiplexer is not overwritten
before it is submitted, it is submitted to the sub-register file.

Ifit is determined that none of the write operations input to
the multiplexer are about to be overwritten then the method
1000 proceeds to step 1006. If, however, it is determined that
atleast one write operation input to the multiplexer is about to
be overwritten then the method proceeds to step 1012.

At step 1006, it is determined whether there is a read
operation input to the multiplexer. If so, the read operation is
given priority. Specifically, if it is determined there is a read
operation input to the multiplexer, the method proceeds to
step 1008. If, however, it is determined that there is no read
operation input to the multiplexer, then the method 1000
proceeds to step 1010.

At step 1008, the read operation is submitted to the sub-
register file. The method 1000 then ends.

At step 1010, one of the write operations input to the
multiplexer is selected and submitted to the sub-register file.
The method 1000 then ends.

At step 1012, it is determined whether only one write
operation input to the multiplexer is about to be overwritten.
If so, that write operation is given priority. Specifically, if is
determined that only one conflicting write operation is about
to be overwritten, then the method 1000 proceeds to step
1014. If, however, it is determined that at least two conflicting
write operations are about to be overwritten then the method
1000 proceeds to step 1016.

At step 1014, the write operation which is about to be
overwritten is submitted to the sub-register file.

At step 1016, one of the write operations about to be
overwritten is submitted to the sub-register file. As described
above only one operation can be submitted to the sub-register
file in a particular cycle.

US 9,304,934 B2

21

Any conflicting operation that is not submitted to the sub-
register file in the current scheduling cycle (e.g. clock cycle)
is considered for submission to the sub-register file in the next
scheduling cycle (e.g. clock cycle). For example, a conflicting
read operation that is not submitted to the sub-register file in
the current clock cycle may be automatically input into the
multiplexer in the next clock cycle and if there is no conflict-
ing write operation that is about to be overwritten in the next
clock cycle, the read operation will be submitted to the sub-
register file. Similarly, a conflicting write operation that is not
submitted to the sub-register file in the current clock cycle
may be selected by the buffer in the next clock cycle to be
input to the multiplexer. If there is no conflicting read opera-
tion or write operation that is about to be overwritten in that
clock cycle, then the write operation will be submitted to the
sub-register file.

In cases where the cumulative size of the buffers is equal to
the size of the ROB 618 or 620 the overwrite method 1000
described in reference to FIG. 10 allows more reads to be
prioritized thus improving system performance over the com-
mit-time method 900 described in reference to FIG. 9. For
example, future instructions may be waiting on data from
read operations before they can execute thus prioritizing read
operations over write operations may speed up the execution
of a program. In contrast, delaying the submission of write
operations to the sub-register file may not affect other instruc-
tions since the write data can be read from the buffers instead.

Further system improvements over the commit-time
method 900 may be realized where the cumulative size of the
buffers is greater than the size of the ROB 618 or 620. In
particular, by increasing the size of the buffers, the time
between a write operation becoming a waiting write opera-
tion and having to submit that write operation to the sub-
register file is increased. This allows more time for the write
operation to be submitted to the sub-register file and thus
decreases the chances of having to stall a read operation for a
write operation.

As with method 500, methods 900 and 1000 may be
repeated each scheduling cycle (e.g. clock cycle).

Those skilled in the art will realize that storage devices
utilized to store program instructions can be distributed
across a network. For example, a remote computer may store
an example of the process described as software. A local or
terminal computer may access the remote computer and
download a part or all of the software to run the program.
Alternatively, the local computer may download pieces of the
software as needed, or execute some software instructions at
the local terminal and some at the remote computer (or com-
puter network). Those skilled in the art will also realize that
by utilizing conventional techniques known to those skilled in
the art that all, or a portion of the software instructions may be
carried out by a dedicated circuit, such as a DSP, program-
mable logic array, or the like.

Memories storing machine executable data for use in
implementing disclosed aspects can be non-transitory media.
Non-transitory media can be volatile or non-volatile.
Examples of volatile non-transitory media include semicon-
ductor-based memory, such as SRAM or DRAM. Examples
of technologies that can be used to implement non-volatile
memory include optical and magnetic memory technologies,
flash memory, phase change memory, resistive RAM.

Any range or device value given herein may be extended or
altered without losing the effect sought, as will be apparent to
the skilled person.

It will be understood that the benefits and advantages
described above may relate to one embodiment or may relate
to several embodiments. The embodiments are not limited to

10

15

20

25

30

35

40

45

50

55

60

65

22

those that solve any or all of the stated problems or those that
have any or all of the stated benefits and advantages.

Any reference to an item refers to one or more of those
items. The term ‘comprising’is used herein to mean including
the method blocks or elements identified, but that such blocks
orelements do not comprise an exclusive list and an apparatus
may contain additional blocks or elements and a method may
contain additional operations or elements. Furthermore, the
blocks, elements and operations are themselves not impliedly
closed.

The steps of the methods described herein may be carried
out in any suitable order, or simultaneously where appropri-
ate. The arrows between boxes in the figures show one
example sequence of method steps but are not intended to
exclude other sequences or the performance of multiple steps
in parallel. Additionally, individual blocks may be deleted
from any ofthe methods without departing from the spirit and
scope of the subject matter described herein. Aspects of any of
the examples described above may be combined with aspects
of any of the other examples described to form further
examples without losing the effect sought. Where elements of
the figures are shown connected by arrows, it will be appre-
ciated that these arrows show just one example flow of com-
munications (including data and control messages) between
elements. The flow between elements may be in either direc-
tion or in both directions

A particular reference to “logic” refers to structure that
performs a function or functions. An example of logic
includes circuitry that is arranged to perform those
function(s). For example, such circuitry may include transis-
tors and/or other hardware elements available in a manufac-
turing process. Such transistors and/or other elements may be
used to form circuitry or structures that implement and/or
contain memory, such as registers, flip flops, or latches, logi-
cal operators, such as Boolean operations, mathematical
operators, such as adders, multipliers, or shifters, and inter-
connect, by way of example. Such elements may be provided
as custom circuits or standard cell libraries, macros, or at
other levels of abstraction. Such elements may be intercon-
nected in a specific arrangement. Logic may include circuitry
that is fixed function and circuitry can be programmed to
perform a function or functions; such programming may be
provided from a firmware or software update or control
mechanism. Logic identified to perform one function may
also include logic that implements a constituent function or
sub-process. In an example, hardware logic has circuitry that
implements a fixed function operation, or operations, state
machine or process.

It will be understood that the above description of a pre-
ferred embodiment is given by way of example only and that
various modifications may be made by those skilled in the art.
Although various embodiments have been described above
with a certain degree of particularity, or with reference to one
or more individual embodiments, those skilled in the art could
make numerous alterations to the disclosed embodiments
without departing from the spirit or scope of this invention.

The invention claimed is:
1. A register file for use in an out-of-order processor, the
register file comprising:

a plurality of sub-register files, each sub-register file com-
prising at least one physical register; and

a plurality of buffers, each buffer being associated with a
sub-register file and arranged to:
receive write operations destined for the associated sub-

register file;

store each received write operation in the buffer;

US 9,304,934 B2

23

receive a write value for each write operation stored in
the buffer;

store each received write value in the buffer;

in response to storing a write value for a particular write
operation, identify that particular write operation as a
waiting write operation;

determine, each clock cycle, whether there is at least one
waiting write operation in the buffer; and

in response to determining there is at least one waiting
write operation in the buffer, select one of the waiting
write operations and issue the selected write operation
to the associated sub-register file.

2. The register file according to claim 1, further comprising
aplurality of arbitration logic units, each arbitration logic unit
being associated with a sub-register file and arranged to:

receive write and read operations issued to the associated

sub-register file; and

resolve conflicts between read and write operations issued

to the associated sub-register file in the same clock cycle
by prioritizing read operations unless a conflicting write
operation is about to be overwritten.

3. The register file according to claim 1, further comprising
aplurality of arbitration logic units, each arbitration logic unit
being associated with a sub-register file and arranged to:

receive write and read operations issued to the associated

sub-register file; and

resolve conflicts between read and write operations issued

to the associated sub-register file in the same clock cycle
by prioritizing read operations unless a conflicting write
operation has reached commit time.

4. The register file according to claim 3, wherein the out-
of-order processor is a multi-threaded processor and each
sub-register file is associated with a plurality of buffers, each
associated buffer being arranged to receive and store write
operations from one of a plurality of threads.

5. The register file according to claim 4, wherein each
arbitration logic unit is arranged to resolve conflicts between
read and write operations issued to the associated sub-register
file in the same clock cycle by prioritizing read operations
unless a conflicting write operation has reached commit time
or its commit time has passed.

6. The register file according to claim 5, wherein each
arbitration logic unit is arranged to:

determine whether commit time has passed for at least one

write operation issued to the associated sub-register file
in a particular clock cycle;

in response to determining commit time has passed for at

least one write operation issued to the associated sub-
register file, select one of the write operations for which
commit time has passed and submit the selected write
operation to the associated sub-register file during the
particular clock cycle;

in response to determining commit time has not passed for

at least one write operation issued to the associated
sub-register file in the particular clock cycle, determine
whether it is commit time for at least one write operation
issued to the associated sub-register file;

in response to determining it is not commit time for at least

one write operation issued to the associated sub-register
file, submit any read operation to the associated sub-
register file; and

in response to determining it is commit time for at least one

write operation issued to the associated sub-register file,
select one of the write operations that has reached com-
mit time and submit the selected write operation to the
associated sub-register file.

10

15

20

25

30

35

40

45

55

60

65

24

7. The register file according to claim 3, wherein commit
time for a particular write operation is determined based on
information received from at least one commit stage of the
out-of-order processor.

8. The register file according to claim 1, further comprising
at least one read logic unit, each read logic unit associated
with at least one sub-register file and arranged to:

receive read operations for each associated sub-register

file; and

issue each read operation to the appropriate sub-register

file and at least one buffer associated with the appropri-
ate sub-register file.

9. The register file according to claim 8, wherein each read
logic unit is arranged to issue the read operation to the appro-
priate sub-register file only in response to determining the
read operation issued to the at least one buffer associated with
the appropriate sub-register file did not produce a match.

10. The register file according to claim 8, wherein each
read logic unit is arranged to issue the read operation to the
appropriate sub-register file and the at least one buffer asso-
ciated with the appropriate sub-register file in the same clock
cycle.

11. The register file according to claim 1, wherein the
number of sub-register files is equal to the number of instruc-
tions that can be committed by the out-of-order processor in
a single clock cycle.

12. The register file according to claim 1, wherein each of
the sub-register files is implemented in random access
memory.

13. The register file according to claim 1, wherein the write
operations are stored in the plurality of buffers in program
order.

14. The register file according to claim 1, wherein each of
the plurality of buffers is a circular buffer.

15. The register file according to claim 1, wherein each
write operation stored in a buffer is issued to the associated
sub-register file at commit time at the latest.

16. An out-of-order processor comprising:

a register file, the register file comprising:

a plurality of sub-register files, each sub-register file
comprising at least one physical register; and
a plurality of buffers, each buffer being associated with
a sub-register file and arranged to:
receive write operations destined for the associated
sub-register file;
store each received write operation in the buffer;
receive a write value for each write operation stored in
the buffer;
store each received write value in the buffer;
in response to storing a write value for a particular
write operation, identify that particular write
operation as a waiting write operation;
determine, each clock cycle, whether there is at least
one waiting write operation in the buffer; and
inresponse to determining there is at least one waiting
write operation in the buffer, select one of the wait-
ing write operations and issue the selected write
operation to the associated sub-register file; and

a decoding and renaming stage, the decoding and renaming

stage arranged to:

receive a fetched instruction;

assign any architectural register referred to in a write
operation of the fetched instruction a sub-register file
and a physical register from the assigned sub-register
file; and

US 9,304,934 B2

25

rename the architectural register with an indicator of the
assigned sub-register file and an indicator of the
assigned physical register.

17. The out-of-order processor according to claim 16,
wherein the sub-register files are assigned to architectural
registers on a round-robin basis.

18. The out-of-order processor according to claim 16,
wherein the assignment of a sub-register file and a physical
register to an architectural register is stored in a register
renaming map.

19. The out-of-order processor according to claim 18,
wherein the decoding and renaming stage is further arranged
to:

rename any architectural register referred to in a read

operation of the fetched instruction with an indicator of
the assigned sub-register file and an indicator of the
assigned physical register as specified in the register
renaming map.

20. A method of reading and writing to a register file of an
out-of-order processor, the register file comprising a plurality

10

26
of sub-register files, each sub-register file comprising at least
one physical register, the method comprising:
receiving at one of a plurality of buffers a write operation
destined for an associated sub-register file;
storing the received write operation in the buffer;
receiving at the buffer a write value for the write operation;
storing the received write value in the buffer in association
with the write operation;
inresponse to storing the received write value in the buffer,
identifying the write operation as a waiting write opera-
tion;
each clock cycle, determining whether there is at least one
waiting write operation in the buffer; and
in response to determining there is at least one waiting
write operation in the buffer, selecting one of the waiting
write operations and issuing the selected write operation
to the associated sub-register file.

#* #* #* #* #*

